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A note on the anisotropy and fabric of highly 
porous materials 
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The dependence of the orthotropic elastic constants of a highly porous material upon the 
stereological parameters characterizing the anisotropy of the porous microstructure has been 
considered in two recent papers in this journal. In the first paper [1] dimensional arguments were 
employed to develop to a relationship between ratios of the orthotropic elastic constants and 
ratios of the mean intercept lengths for a class of cell wall bending models of highly porous 
materials. In the second paper E2] the general tensorial form of the relationship between the 
orthotropic elastic constants and the mean intercept length was described without reference to 
a specific form or type of porous microstructure. The purpose of this note is to observe that the 
particular relationships obtained from the class of cell wall bending models used in the first paper 
are proper special cases of the general relationships given in the second paper. 

1. Introduction 
A relationship between the fourth-rank tensor of 
elastic constants of a porous, anisotropic, linear elastic 
material and stereological parameters characterizing 
the anisotropy of the microstructure of the material 
was presented by Cowin l-3]. In addition to the poros- 
ity, the stereological parameter characterizing the an- 
isotropy of the microstructure was called the fabric 
ellipsoid or fabric tensor of the material. In the present 
work the fabric ellipsoid, represented by a symmetric 
second-rank tensor, characterizes the geometric ar- 
rangement of the porous material microstructure by 
a directed mean intercept length measure. In develop- 
ing this relationship between elastic constants and 
fabric [3], it was assumed that the matrix material of 
the porous elastic solid was isotropic and that the 
anisotropy of the porous elastic solid was completely 
determined by the fabric ellipsoid or tensor. It was 
then shown that the material symmetries of ortho- 
tropy, transverse isotropy and isotropy correspond to 
the cases of three, two and one distinct eigenvalues of 
the fabric tensor, respectively. In terms of the fabric 
ellipsoid, these cases correspond to cases of an ellip- 
soid with three, two and no unequal axes. The charac- 
teristics of the fabric measure are described in the next 
section, and the formulae for the dependence of the 
orthotropic elastic constants upon fabric are given in 
Section 3. The formulae for the dependence of the 
orthotropic elastic constants upon fabric for the class 
of open cell foam models considered by Huber and 
Gibson [1] are summarized and converted into the 
notation of this paper in Section 4. ~ It is then shown 
that the formulae presented by Huber and Gibson, 
and obtained from a specific class of structural models 
of an open celled foam, are special cases of the formulae 
given by Cowin [3] and Turner and Cowin 1-2] and 
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based on a general, not cell wall bending specific, 
model of an anisotropic porous material. This coincid- 
ence reinforces both the general approach of Cowin 
1,3] and the cell wall bending model approach of 
Huber and Gibson [1]. This matter is considered 
further in the final discussion, Section 5. 

2. Fabric 
The representation of the degree of symmetry and the 
type of symmetry for orthotropic elastic symmetries 
and higher elastic symmetries by a single symmetric 
second-rank tensor representing the material micro- 
structure have previously been explored [2-4]. The 
generic name used by many for this tensor represent- 
ing the material microstructure is the fabric tensor. 
The exact definition of the fabric tensor varies with the 
material being considered and with the investigator. 
Some of the definitions of the fabric tensors for various 
porous geological and biological materials are de- 
scribed by Turner and Cowin [2]. In this paper the 
definition of fabric as a directed mean intercept length 
measure is employed. This definition of fabric is de- 
scribed by Cowin [5, 6] and Turner and Cowin [2]; it 
is based on work of Harrigan and Mann [7]. 

Let Hi, i = 1, 2, 3, denote the lengths of the three 
axes of the fabric ellipsoid or, equivalently, the eigen- 
values of the fabric tensor H. In the principal coordi- 
nate system of H, the matrix of tensor components has 
the form 

H = 0 H2 0 (1) 

0 0 H3  

The parameter Hi represents the mean intercept 
length in the coordinate direction xi, where xl is 
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a principal direction of H. In this work only the 
diagonal form of H will be considered. Each of the Hi 
satisfies the cubic equation 

H 3 - I H 2 + IIHi - I I I  = 0, 

i = 1,2,3 (2) 

where I, II, and III represent the invariants of the 
fabric tensor H. The invariants are related to the 
principal components Hi, by the formulae 

I = H1 + H2 + H3 

II = H1H2 + H1H3 + HaH2 

I I I =  H1H2H a (3) 

These invariants are related to the traces of H, H 2 and 
H 3 by the formulae obtained, for example, by Ericksen 
[8] 

t rH  = H1 + H2 + H3 = I 

t r H  2 = H 2 + H~ + H 2 = I z - 211 

t r n  3 = H13 + H 3 + H 3 = I 3 - 31(11) + 3111 

(4) 

3. The dependence of the or thotropic  
elastic constants upon fabric 

There are nine distinct orthotropic elastic constants in 
a symmetrical coordinate system. The particular nine and 
elastic constants considered here are called the tech- 
nical elastic constants and consists of three Young's 
moduli, three shear moduli, and six Poisson's ratios 
(only three of which are independent). The Young's 
moduli are denoted by Ei, i = 1, 2, 3; the shear moduli 
by Gij and the Poisson's ratios by vi~ where 
i, j = 1, 2, 3 and i # j. The interrelationships between 
the Young's moduli and Poisson's ratios are given by 

Ejvij = Eivji, i # j, no sum on i,j. (5) 
the form 

It was shown by Cowin [3] (see also [2]) that these 1 
elastic constants are related to the fabric components - -  
by E1 

1 
1 --- 

- ca + c2(Hi + Hi) + c3(H 2 + H2), i:/:j E3 
Gij (6) 

1 
- al + 2cl + dl + 2(a2 + 2c2 + d2)Hi 

El 

+ (2a3 + ba + 4c3 + d3)H 2 (7) 

Vij Vji 
- - aa + az(Hi + Hi) + a3(HZl 

El Ej 

+ H~) + baHiHj + bzHiHj(Hi + H~) 

2 2 + baHi Hj 

i :/: j, i,j = 1,2,3 (8) 

where the ai, bi, ci and di, i = 1, 2, 3, are functions of I, 
II and III and some measure of the porosity of the 
material. The coefficients d ,  i = 1, 2, 3, are functions 
of the coefficients bi and the invariants I, 1I, and III, 

da = (2b2 + b3I)III, 2d2 = b3(III - I(II)) 

- 2b2II, d3 = 2b2I + b3(I 2 - II) (9) 
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In the representation for Ei the characteristic Equa- 
tion 2 has been used to express the third- and fourth- 
order terms in Hi given in the formulae in Cowin [3] 
and Turner and Cowin I-2] in terms of the second- and 
first-order terms; the coefficients di arise from this 
algebraic manipulation. The points considered in this 
note do not concern the porosity dependence of the 
coefficients ai, bi, cl and di, i = 1, 2, 3 directly; this 
dependence is important and always permitted, 
however. 

4.  T h e  a n i s o t r o p y  o f  f o a m s  
In [ lJ  the elements of mechanics of materials were 
applied to a class of cell wall bending models of an 
elastically orthotropic foam to construct the algebraic 
relationship between ratios of the three Young's 
moduli, the ratios of the three shear moduli, and the 
principal mean intercept lengths. The unit cells in  the 
structural model were connected to adjacent cells at 
the cell midpoint to develop a bending response of the 
structure. Examples of these results are the ratios 
G12/G23 and E3/E 1 as functions of the mean intercept 
lengths H ,  i = 1, 2, 3 

Gi2 (H2 d- H3) 
- (10) 

G23 (H2 + Ha) 

E 3 H~(1 .-t- H~/H~) 
E 1 - -  H2(1 + H~/H~) (11) 

respectively. The notation employed by Huber and 
Gibson [1] for these results is slightly different: the 
ratio Rij, where i, j = l, 2, 3 and i # j, is used in place 
of HI/Hj. Straightforward algebraic manipulations, 
combined with the use of the notation introduced in 
the third equation of (4), namely t rH  3 for 
(H1) 3 + (HE) 3 + (H3) 3, permits (11) to be rewritten in 

H~(trH 3 - H 3) 
1 (12) 

H~( t rH  3 - H 3) 

These results suggest that the reciprocals of Gij and El 
may be represented by 

i 
Gi--j = G(Ui + Hi), i ~ j (13) 

and 
1 E 

Ei - H/5(trH 3 -- H 3) (14) 

where G and E represent arbitrary functions of I, II, 
III and the porosity. 

The representations 13 and 14 for Gij and Ei are 
special cases of the representations given above by 
Equations 6 and 7, respectively. It is easy to see that 
Equation 13 is a special case of Equation 6 because the 
two formulae coincide if one sets ca and c3 equal to 
zero and c2 equal to G in the formula 6. A casual 
inspection suggests that it might not be possible to 
obtain coincidence between Equations 14 and 7, but 
such is not the case. The coincidence can be seen in the 



following way: formally divide the denominator into 
the numerator of Equation 14. The result is an infinite 
series in Hi, the nth term being of the form (Hi)" times 
a scalar valued function of I, II and III. (Recall from 
Equation 4 that t rH 3 can be expressed in terms of 1, II 
and III.) All terms of order higher than (Hi) 2 can t h e n  
be eliminated from the infinite series by repeated use 
of Equation 2. The result is then a specific form of 
Equation 7, and it has been established that the results, 
Equations 13 and 14, are special cases of Equations 
6 and 7, respectively. 

5. Discussion 
There are several interesting points concerning the 
simple algebraic observations described above. The 
observations represent positive and reinforcing inter- 
action between the development of a general theory 
and the development of specific structural models for 
the anisotropy of highly porous materials. The results 
that were common to both the general model and the 
cell wall bending model are the following. 

(a) The orthotropic elastic Young's moduli Ei de- 
pend directly upon Hi and the elementary symmetric 
functions I, II and III of i l l ,  Hz, H3. This means that 
the influence of the components of H other than Hi 
only occurs through the elementary symmetric fun- 
ctions I, II and III. 

(b) The orthotropic shear moduli G u depend dir- 
ectly upon Hi, Hi, I, II and III. This means that the 
influence of the component of H other than Hi and Hj 
occurs only through I, II and III. Both approaches 
predict a dependence of the inverse of G u upon the 
sum Hi + Hi. 

The notation employed in Equations 6, 7 and 8 for 
the relationships between the orthotropic elastic con- 
stants and the mean intercept length measures presents 
these results in a relatively concise form, emphasizing 
the appropriate symmetries in the functional depend- 
encies. In order to obtain the corresponding results for 
transversely isotropic symmetry one has only to set 
two of the Hi equal. The number of elastic coefficients 
then reduces from nine to five. Note that, if one takes 
Ht and H2 to be equal, then El and E2, G13 and G23, 
vt2 and vzl, vt3 and v23, and v31 and v32 are all equal, 
G12 equals E1 divided by 2(1 + v12), and E3v13 equals 
EIV31 .  

In the development above of the correspondence 
between the general approach of Cowin [3] and the 
cell wall bending model approach of Huber and Gib- 
son [1], it is assumed that the spatial dsitribution of 
the directed mean intercept lengths of the cell wall 
bending model approach will form a second-rank ten- 
sor or, equivalently, an ellipsoid. The arguments of 
Huber and Gibson [1] apply to a class of models, 
a class that includes geometrically regular rectangular 
structural cell models of the type illustrated therein, as 
well as less regular models. The consideration of the 
mean intercept length as a function of spatial direction 
for idealized linear plane geometric structures re- 
ported by Tozeren and Skalak [9] shows that the 

directed mean intercept lengths of the geometrically 
very regular model types considered by Huber and 
Gibson [1], for example, the rectangular structural 
cell model type, will not form an ellipsoid, but rather 
a polyhedron with three orthogonal axes of symmetry. 
Along each orthogonal axis of symmetry the half-di- 
mension of the polyhedron will be equal to one of the 
mean intercept lengths and the eight octants of the 
polyhedron will be identical, The exterior boundary of 
each octant will be a mosaic of polygons. It is also 
suggested by the results of Tozeren and Skalak [9] 
that, as the precise regularity of the cell model tends to 
the irregularities of natural porous materials, the poly- 
hedron representing the spatial distribution of the 
directed mean intercept lengths will approach more 
closely an ellipsoid. In the analysis presented above it 
is assumed that even the polyhedron representing the 
spatial distribution of the directed mean intercept 
lengths of the geometrically very regular model types 
considered by Huber and Gibson [1], for example, the 
rectangular structural cell model type, can be approx- 
imated by an ellipsoid. This approximation may be 
accomplished, for example, by a least squares fit of an 
ellipsoid to the actual polyhedron representing the 
spatial distribution of the directed mean intercept 
lengths. 

Finally, it is noted that formulae are given by Huber 
and Gibson [1] for the dependence upon the ratios of 
the mean intercept lengths in different directions of 
both the ratios of elastic collapse stresses in different 
directions and the plastic collapse stresses in different 
directions. The methods described above can be em- 
ployed to show that these results are consistent with 
the theory of anisotropic strength dependence upon 
fabric presented by Cowin [4]. Both specific results 
are consistent with the same general theory; the gen- 
eral theory is like a "theory of strength" and does not 
distinguish between yield and ultimate stress nor be- 
tween elastic and plastic collapse stresses. 
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